1) A regular pentagon is centered about the origin and has a vertex at (0, 4).

Which transformation maps the pentagon to itself?

A. a reflection across line *m*

B. a reflection across the *x*-axis

C. a clockwise rotation of 100° about the origin

D. a clockwise rotation of 144° about the origin

2) A parallelogram has vertices at (0, 0), (0,6), (4, 4), and (4, -2).

Which transformation maps the parallelogram to itself?

A. a reflection across the line x = 2

B. a reflection across the line y = 2

C. a rotation of 180° about the point (2, 2)

D. a rotation of 180° about the point (0, 0)

3) Which sequence of transformations maps $\triangle ABC$ to $\triangle RST$?

- **A.** Reflect $\triangle ABC$ across the line x = -1. Then translate the result 1 unit down.
- **B.** Reflect $\triangle ABC$ across the line x = -1. Then translate the result 5 units down.
- C. Translate $\triangle ABC$ 6 units to the right. Then rotate the result 90° clockwise about the point (1, 1).
- **D.** Translate $\triangle ABC$ 6 units to the right. Then rotate the result 90° counterclockwise about the point (1, 1).

1) An equation of line *a* is $y = -\frac{1}{2}x - 2$.

Which is an equation of the line that is perpendicular to line a and passes through the point (-4, 0)?

A.
$$y = -\frac{1}{2}x + 2$$

B.
$$y = -\frac{1}{2}x + 8$$

C.
$$y = 2x - 2$$

D.
$$y = 2x + 8$$

3) Given the points P(2, -1) and Q(-9, -6), what are the coordinates of the point on directed line segment \overline{PQ} that partitions PQ in the ratio $\frac{3}{2}$?

A.
$$\left(-\frac{23}{5}, -4\right)$$

B.
$$\left(-\frac{12}{5}, -3\right)$$

C.
$$\left(-\frac{5}{3}, -\frac{8}{3}\right)$$

D.
$$\left(-\frac{5}{3}, -\frac{8}{3}\right)$$

2) Parallelogram ABCD has vertices as shown.

Which equation would be used in proving that the diagonals of parallelogram *ABCD* bisect each other?

A.
$$\sqrt{(3-1)^2 + (2-0)^2} = \sqrt{(1-3)^2 + (0+4)^2}$$

B.
$$\sqrt{(3+1)^2 + (2+0)^2} = \sqrt{(1+3)^2 + (0-4)^2}$$

C.
$$\sqrt{(-1-1)^2 + (4-0)^2} = \sqrt{(1-3)^2 + (0+4)^2}$$

D.
$$\sqrt{(-1+1)^2 + (4+0)^2} = \sqrt{(1+3)^2 + (0-4)^2}$$

4) Triangle *ABC* has vertices as shown. What is the area of the triangle?

- A. $\sqrt{72}$ square units
- **B.** 12 square units
- C. $\sqrt{288}$ square units
- **D.** 24 square units